company logo


Антиоксидантная система организма, факторы клеточной защиты

Церулоплазмин или голубая феррооксидаза - гликопротеид сыворотки крови, образующийся в печени, катализирует реакцию:

Fe2+ + 4H+ O2 - > 4Fe3+ + H2O

Он способствует окислению полиаминов, полифенолов, аскорбиновой кислоты, возможно участвует в транспорте меди. Прямая антиоксидантная функция определяется супероксиддисмутазной и ферриоксидазной активностью, а непрямые антиоксидантные свойства связаны с окислением Fe2+ и аскорбината, потенциальных источников супероксидного анион-радикала. Это основной реактант острой фазы воспаления.

Как указывалось, в процессе дисмутации супероксидного анион-радикала образуется H2O2, восстанавливаемая до H2O в основном каталазой и глутатионпероксидазой.

Каталаза - хромопротеид с ММ около 240 000 Д, состоит из 4 субъеди-ниц, имеющих по одной группе гема, локализуется в основном в пероксисомах, частично - в микросомах и в меньшей мере - в цитозоле. Полагают, что каталаза не имеет высокого сродства к H2O2 и не может эффективно обезвреживать это соединение при низких концентрациях, имеющихся в цитозоле. В пероксисомах, где концентрация H2O2 высока, каталаза активно разрушает ее.

Разложение H2O2 каталазой осуществляется в два этапа:+-каталаза + 2 H2O2 - > окисленная каталаза + H2O2 - > Fe3+-каталаза + H2O2 + O2.

При этом в окисленном состоянии каталаза работает как пероксидаза. Субстратами в пероксидазной реакции могут быть этанол, метанол, формиат, формальдегид и другие доноры водорода.

Следует отметить, что около 0,5% O2, образующегося в результате разложения H2O2, возникает в возбужденном синглетном состоянии и таким образом в процессе разложения перекиси водорода вновь генерируются активные формы O2.

Активности каталазы и СОД коррелируют между собой, что может быть связано с переключением потока электронов с одной цепи транспорта на другую. В этих условиях СОД и каталаза действуют как звенья одной системы утилизации O2, размещенные в разных участках клетки.

Максимальная концентрация каталазы обнаружена в эритроцитах.

Важнейшей системой инактивации свободных радикалов являются восстановленный глутатион и комплекс ферментов - глутатионпероксидазы, глутатионтрансферазы и глутатионредуктазы.

Глутатион синтезируется в печени, откуда транспортируется в различные органы и ткани, обеспечивает восстановление дисульфидных групп белков, дигидроаскорбиновой кислоты, с участием глутатион-трансферазы образует конъюгаты в печени с электрофильными соединениями и последующим выведением их с мочой.

Инактивация H2O2 в клетках обеспечивается также глутатионпероксидазой (ГПО), последняя является Se-содержащим ферментом, около 70% ее локализовано в цитоплазме и около 30% - в митохондриях всех клеток млекопитающих. Глутатион-пероксидаза - белок с ММ 84000-88000, состоит из 4 идентичных субъединиц, каждая из которых включает 1 атом Se.

Глутатионпероксидаза катализирует реакцию восстановления гидроперекиси с помощью глутатиона, обладает широкой субстратной специфичностью по отношению к гидроперекисям, но абсолютно специфична к глутатиону. Сродство глутатионпероксидазы и H2O2 выше, чем у каталазы, поэтому первая более эффективно работает при низких концентрациях субстрата, в то же время в защите клеток от окислительного стресса, вызванного высокими концентрациями H2O2, ключевая роль принадлежит каталазе. Последнее особенно четко продемонстрировано на эндотелиальных клетках.

Перейти на страницу:
1 2 3 4 5 6


Новое на сайте

Другие материалы


Copyright © 2013 - Все права защищены - www.timebiology.ru